direct product, metabelian, supersoluble, monomial
Aliases: C2×C32⋊C18, C3⋊S3⋊C18, (C3×C6)⋊C18, (C3×C9)⋊5D6, (C3×C18)⋊1S3, C6.5(S3×C9), C32⋊(C2×C18), C3.2(S3×C18), C32⋊C9⋊2C22, (C32×C6).3C6, C33.1(C2×C6), C32.14(S3×C6), C6.14(C32⋊C6), (C2×C3⋊S3)⋊C9, (C3×C3⋊S3).C6, (C6×C3⋊S3).C3, (C2×C32⋊C9)⋊1C2, (C3×C6).30(C3×S3), C3.5(C2×C32⋊C6), SmallGroup(324,62)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C33 — C32⋊C9 — C32⋊C18 — C2×C32⋊C18 |
C32 — C2×C32⋊C18 |
Generators and relations for C2×C32⋊C18
G = < a,b,c,d | a2=b3=c3=d18=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1c-1, dcd-1=c-1 >
Subgroups: 253 in 67 conjugacy classes, 25 normal (19 characteristic)
C1, C2, C2, C3, C3, C22, S3, C6, C6, C9, C32, C32, D6, C2×C6, C18, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C9, C3×C9, C33, C2×C18, S3×C6, C2×C3⋊S3, S3×C9, C3×C18, C3×C18, C3×C3⋊S3, C32×C6, C32⋊C9, S3×C18, C6×C3⋊S3, C32⋊C18, C2×C32⋊C9, C2×C32⋊C18
Quotients: C1, C2, C3, C22, S3, C6, C9, D6, C2×C6, C18, C3×S3, C2×C18, S3×C6, S3×C9, C32⋊C6, S3×C18, C2×C32⋊C6, C32⋊C18, C2×C32⋊C18
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)(17 25)(18 26)
(2 8 14)(3 9 15)(5 17 11)(6 18 12)(19 31 25)(20 32 26)(22 28 34)(23 29 35)
(1 13 7)(2 8 14)(3 15 9)(4 10 16)(5 17 11)(6 12 18)(19 31 25)(20 26 32)(21 33 27)(22 28 34)(23 35 29)(24 30 36)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)
G:=sub<Sym(36)| (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26), (2,8,14)(3,9,15)(5,17,11)(6,18,12)(19,31,25)(20,32,26)(22,28,34)(23,29,35), (1,13,7)(2,8,14)(3,15,9)(4,10,16)(5,17,11)(6,12,18)(19,31,25)(20,26,32)(21,33,27)(22,28,34)(23,35,29)(24,30,36), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)>;
G:=Group( (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26), (2,8,14)(3,9,15)(5,17,11)(6,18,12)(19,31,25)(20,32,26)(22,28,34)(23,29,35), (1,13,7)(2,8,14)(3,15,9)(4,10,16)(5,17,11)(6,12,18)(19,31,25)(20,26,32)(21,33,27)(22,28,34)(23,35,29)(24,30,36), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36) );
G=PermutationGroup([[(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24),(17,25),(18,26)], [(2,8,14),(3,9,15),(5,17,11),(6,18,12),(19,31,25),(20,32,26),(22,28,34),(23,29,35)], [(1,13,7),(2,8,14),(3,15,9),(4,10,16),(5,17,11),(6,12,18),(19,31,25),(20,26,32),(21,33,27),(22,28,34),(23,35,29),(24,30,36)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)]])
60 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 9A | ··· | 9F | 9G | ··· | 9L | 18A | ··· | 18F | 18G | ··· | 18L | 18M | ··· | 18X |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 | 18 | ··· | 18 | 18 | ··· | 18 |
size | 1 | 1 | 9 | 9 | 1 | 1 | 2 | 2 | 2 | 6 | 6 | 6 | 1 | 1 | 2 | 2 | 2 | 6 | 6 | 6 | 9 | 9 | 9 | 9 | 3 | ··· | 3 | 6 | ··· | 6 | 3 | ··· | 3 | 6 | ··· | 6 | 9 | ··· | 9 |
60 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 |
type | + | + | + | + | + | + | + | ||||||||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | C9 | C18 | C18 | S3 | D6 | C3×S3 | S3×C6 | S3×C9 | S3×C18 | C32⋊C6 | C2×C32⋊C6 | C32⋊C18 | C2×C32⋊C18 |
kernel | C2×C32⋊C18 | C32⋊C18 | C2×C32⋊C9 | C6×C3⋊S3 | C3×C3⋊S3 | C32×C6 | C2×C3⋊S3 | C3⋊S3 | C3×C6 | C3×C18 | C3×C9 | C3×C6 | C32 | C6 | C3 | C6 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 2 | 4 | 2 | 6 | 12 | 6 | 1 | 1 | 2 | 2 | 6 | 6 | 1 | 1 | 2 | 2 |
Matrix representation of C2×C32⋊C18 ►in GL6(𝔽19)
18 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 0 | 0 | 18 |
1 | 18 | 7 | 0 | 3 | 9 |
0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 0 |
0 | 0 | 0 | 0 | 0 | 7 |
11 | 0 | 0 | 11 | 14 | 13 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 7 |
4 | 12 | 16 | 16 | 0 | 11 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
9 | 11 | 7 | 1 | 3 | 15 |
G:=sub<GL(6,GF(19))| [18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[1,0,0,0,0,0,18,7,0,0,0,0,7,0,11,0,0,0,0,0,0,1,0,0,3,0,0,0,11,0,9,0,0,0,0,7],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,11,0,0,7,0,0,14,0,0,0,7,0,13,0,0,0,0,7],[4,0,0,0,0,9,12,0,0,12,0,11,16,0,0,0,12,7,16,0,18,0,0,1,0,0,0,0,0,3,11,12,0,0,0,15] >;
C2×C32⋊C18 in GAP, Magma, Sage, TeX
C_2\times C_3^2\rtimes C_{18}
% in TeX
G:=Group("C2xC3^2:C18");
// GroupNames label
G:=SmallGroup(324,62);
// by ID
G=gap.SmallGroup(324,62);
# by ID
G:=PCGroup([6,-2,-2,-3,-3,-3,-3,68,2164,1096,7781]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^3=c^3=d^18=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1*c^-1,d*c*d^-1=c^-1>;
// generators/relations